A multi-componential analysis of emotions during complex learning with an intelligent multi-agent system

نویسندگان

  • Jason M. Harley
  • François Bouchet
  • M. Sazzad Hussain
  • Roger Azevedo
  • Rafael A. Calvo
چکیده

In this paper we discuss the methodology and results of aligning three different emotional measurement methods (automatic facial expression recognition, self-report, electrodermal activation) and their agreement regarding learners’ emotions. Data was collected from 67 undergraduate students from a North American university who interacted with MetaTutor, an intelligent, multi-agent, hypermedia environment for learning about the human circulatory system, for a 1 hour learning session (Azevedo et al., 2013, Harley, Bouchet, & Azevedo, 2013). A webcam was used to capture videos of learners’ facial expressions, which were analyzed using automatic facial recognition software (FaceReader 5.0). Learners’ physiological arousal was measured using Affectiva’s Q-Sensor 2.0 electrodermal activation bracelet. Learners self-reported their experience of 19 different emotional states (including basic, learner-centered, and academic achievement emotions) using the Emotion-Value questionnaire (Harley et al., 2013). They did so on five different occasions during the learning session, which were used as markers to align data from FaceReader and Q-Sensor. We found a high agreement between the facial and self-report data (75.6%) when similar emotions were grouped together along theoretical dimensions and definitions (e.g., anger and frustration) (Harley, et al., 2013). However, our new results examining the agreement between the Q-Sensor and these two methods suggests that electrodermal (EDA/physiological) indices of emotions do not have a tightly coupled (Gross, Sheppes, & Urry, 2011) relationship with them. Explanations for this finding are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent multi-agent modeling of the interbank network and evaluation of the impact of regulatory policies

agent-based modeling is an emerging computational technique that makes it possible to simulate complex economic systems, including the banking network, with a bottom-up approach. In this paper, the country's banking network is simulated with an intelligent multi-agent modeling model and indicates that these agents behave based on the adaptive learning. This modeling has been done with the aim o...

متن کامل

An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources

This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...

متن کامل

User-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm

Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...

متن کامل

On the use of multi-agent systems for the monitoring of industrial systems

The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences su...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers in Human Behavior

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015